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Vector-Valued Support Vector Regression

Mark Brudnak, Member, IEEE

Abstract— A vector-valued extension of the support vector
regression problem is presented here. The vector-valued variant
is developed by extending the notions of the estimator, loss
function and regularization functional from the scalar-valued
case. A particular emphasis is placed on the class of loss
functions chosen which apply the c-insensitive loss function to
the p-norm of the error. The primal and dual optimization
problems are derived and the KKT conditions are developed.
The general case for the p-norm is specialized for the 1-, 2-
and oo-norms. It is shown that the vector-valued variant is a
true extension of the scalar-valued case. It is then shown that
the vector-valued approach results in sparse representations in
terms of support vectors as compared to aggregated scalar-
valued learning.

I. INTRODUCTION

Multi-task learning is concerned with mappings of the
form f : R™ — Y™ where J £ {0,1} for classification and
Y £ R for regression. The problem of multi-task learning
is approachable as an aggregation of independent single-task
learning problems f; : R™ — ). Certainly, there is no loss
of generality with this approach, however, when the number
of tasks, m, is large, the aggregated approach has some
disadvantages. Regardless of the single-task method used,
the aggregated method requires m optimizations, which for
the support vector machine (SVM), potentially requires m
sets of redundant kernel computations. Also, for SVM, it
is likely that there will only be coincidental commonality
between the support vectors associated with the different
tasks. The impact of this first disadvantage is incurred during
training, however, the cost of the second is incurred during
use. Both of these costs may be negligible where kernel
computations are inexpensive, however as kernel compu-
tations become more expensive (i.e. large n) these costs
may become significant. Another motivation according to
Micchelli and Pontil [1] for muiti-task learning is mutual
dependence among the tasks, which the aggregated approach
ignores. Such dependence occurs when y = f(x) is an
embedding (which is certain when n < m). In such a
case, the outputs y lie on a subspace embedded in R™.
For regression such embeddings occur with the use of the
unit quaternions to represent rotations in 3-space, which are
locally parameterized by three orthogonal coordinates, but
embedded in R%. They also occur in the configuration space
of mechanisms with closed kinematic chains for which a
global parameterization is not available. These cases as well
as others motivate the development of multi-task learning
methods and in particular the multi-task SVM for which the
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regression problem will be addressed here. Such regression
problems are described as vector-valued in the sequel.

Recent work on vector-valued support vector regression
(VV-SVR) is as follows. Vazquez and Walter [2] use a
separately trained Matérn class kernel for each task and then
use the single-task SVM for training. Micchelli and Pon-
til [1], [3] give a theoretical treatment of reproducing kernel
Hilbert spaces (RKHS) in the range-space of the estimator.
Their result is an extension of the traditional scalar-valued
kernel function to an operator-valued kernel. Ben-David
and Schuller [4] develop conditions under which learning
multiple tasks is provably beneficial. Evgeniou and Pontil [5]
consider the learning of an average task simultaneously with
small deviations for each task. Evgeniou, Micchelli and
Pontil [6] extend their earlier results by developing indexed
kernels with coupled regularization functionals.

In contrast to this previous work, this paper emphasizes
the choice of loss function in the vector-valued regression
problem. Prior work on the loss function by Pérez-Cruz et
al [7] used the squared Euclidian norm of the error with a
hyper-spherical insensitive zone. Also, Sanchez-Fernindez,
et al [8] used a shifted squared Euclidian norm for a differ-
entiable loss function. These two approaches do not reduce to
the traditional SVR loss function in one-dimensional cases.
The VV-SVR proposed here generalizes the -insensitive loss
function of the scalar-valued case. It follows the traditional
scalar-valued SVM development [9]. The problem is first
setup by defining a regularized risk functional which ex-
tends the scalar-valued case. This problem is then cast into
primal, Lagrangian and then dual forms. We then develop
the Karush-Kuhn-Tucker (KKT) conditions to relate the dual
variables to the primal variables which are used to find the
bias. The general case is then specialized for the common
norms and specific approaches to determination of the bias
are developed. The method is demonstrated and shown to
be sparse in support vectors. The paper concludes with a
comparison of the vector-valued case to the scalar-valued
case and some observations.

II. SCALAR-VALUED SUPPORT VECTOR REGRESSION

In the scalar-valued support vector regression (SV-SVR)
problem one seeks to model a causal relationship f
R™ — R between inputs x and an output y from a finite
set of observations {(x;,:)}{. Generally such a regression
problem takes the form of

2
Ryeg=P(m) +C Y L(ys ¥ (xi,m) (D

i=1

Min :
kil

in which we wish to minimize both the summed loss and
a regularization functional simultaneously. For the SV-SVR
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problem the estimator §(-, ) is chosen as

g(xv {Wvb}) = <W, ¢(X)> +b 2

where ¢ : R® — RY (or ¢ : R® — L?) is a nonlinear
mapping to a high-dimensional feature space and clearly
m = {w,b} where w is the weight vector and b is the
bias. We desire that the SV-SVR perform well on our set
of observations, so we choose w and b so that the summed
loss °. L(yi, §;) is minimized where the loss function L(-, -)
is typically the e-insenstive loss function L (y,§) = L (e) =
le]. £ max(0,|e| —€) where e £ y — §. Since v > ¢,
the minimization of the summed loss alone is ill-posed
and therefore traditional SVR introduces the regularizational
functional P(w) £ 1 (w, w) to stabilize the solution. With
these choices, the SV-SVR optimization problem in (1)
becomes

Min

: Rre =3
{w, b) I

5w, W)

, 3)
+C3 Iy = (w, $(x)) b,
i=1

Now because this problem is cast in a large space of parame-
ters {w, b} and because it is non-smooth, it is transformed
into the dual problem

14 £

1

Max: D=—3 3 Bibik(xix;) + b
I i,j=1 i=1

¢
~ey |6l
i=1

£
ST: Y Bi=0, |B]<C.
=1

)

where k(x;,%;) = (¢(x;), ¢(x;)) is the kernel function.
Given the fact that w = S°°_ B;¢p(x;), the final form of the
estimator then becomes

G(x) = Y Bik (xi,x) +b

icelsy

&)

where Isy 2 {¢ : B; # 0} denotes the set of indices of
the support vectors X; and b is determined using the KKT
conditions, which in the SV-SVR case may be briefly stated
as

B:i=0 = |ej| <e,
0< 8] <C = les] =,
1Bil =C == lei| > ¢,

Bi £0 = fBie; > 0.

This SV-SVR estimator has several desirable properties:
(1) it generalizes well, (2) it is based on linear math,
(3) the optimization problem is convex and (4) the dual
problem is quadratic. In particular, the SVR’s generalization
ability is attributable to the sparsisity and boundedness of
the dual problem (4) solution. Sparsisity is attributable to
the e-insensitive zone (i.e. — < e; < ¢€) of the loss

Z

function since the 5Ef=1 |B:| term creates a cusp in the
objective function (4), “trapping” solutions at 3; = 0. Both
the e-insensitive zone and the cusp vanish if ¢ = 0. The
boundedness of each (3; is attributable to the linear part of
the loss function (i.e. the bound on g; is related to C g—g, see
Smola and Scholkopf [10, pg. 13]). Since both the sparsisity
and the boundedness of the estimator limit the number of
free parameters of the estimator, in a practical sense the
generalization properties of SV-SVR may be attributable to
the form of the loss function.

III. VECTOR-VALUED SUPPORT VECTOR REGRESSION

We will now extend those concepts just discussed for the
SV-SVR case to the vector-valued case. For each choice
made we will maintain the concepts from the scalar-valued
case to assure that the VV-SVR is a true generalization of
the SV-SVR.

A. Problem Setup

In the vector-valued case, the process to be estimated is
of the form f : R® — R™ which maps inputs x € R" to
vector-valued outputs y € R™. From a finite set observations
{(x4,y:)}, our goal is to find a function ¥(x, 7) which will
be trained over its free parameters 7 as

¢
I\/Erin : Rreg = ,P(Tl') + CZ L (y'hy(xia ﬂ.)) . (6)
i=1
The structure of P(-), §(-,7) and L(:,-) are now chosen to
extend the same concepts from the SV-SVR case. For VV-
SVR, the family of functions ¥(-,-) will take the linear form

¥ (x;{W,b}) £ We(x) + b )

which generalizes (2) where the free parameters © =
{W,b} consist of the weights W € R™** and the bias b €
R™. Similar to the SV-SVR case, a quadratic regularization
functional is chosen as P(W) £ 1 Tr(WWT). Finally, the
loss function must be extended such that L(-,-) : R™ x
R™ — R,. To construct this loss function in the spirit of
the SV-SVR, it is natural to maintain the concept of the -
insensitive loss function. Such an extension is obtained by
applying |- | to a norm of the error e = y — ¥ which yields

Lie) & ®)

el |

em)T and |||, is the p-norm defined
by O, Ieilp)% for 1 < p < oo and max; |e;| for p ~ oo.

where e = [e;

This loss function has an insensitive zone for |||e||,, . <eg,is
a true generalization of |- |, and has a “linear” behavior for
lHer > e. Combining these choices for y(-,-), ™, P(:)
and L(-), (6) becomes

Min :

_.1 T
Min ¢ Reog =5 THWWT)

¢ 9)
+O3 |llye ~ Walxs) = b, |
i=1



which we note is a generalization of (3). In the next sec-
tion we will convert (9) into a suitable form for practical
optimization by developing the dual problem in the space of
Lagrange multipliers.

B. Dual Problem Development

Observe that (9) is non-smooth and may be infinite di-
mensional; however, it may be simplified by deriving the
dual problem. First, the objective function may be smoothed
by introducing the slack variables £;, §; and &; resulting in
the primal optimization problem

s a
Wb, }\2?161, e Pz Tr(WWT) + 0;&
ST: |8+ 8|, —& —€<0, & >0,
-~ Wo(x;) -b—4; <0,
—yi+Wo(x;) +b—-4; <0,
§;>0,6°>0,Vi=1,....¢
(10)
where the inequalities are taken element-wise and || - ||, is

defined without the absolute value since d;, d; > 0. Now
to reduce the dimension of the problem, we will cast the
primal problem P into Lagrange form by introducing the
multipliers, a;, 7:, ¥; Y5, 0, 07 as

111

4
+ 32T (v + Wolx:) +b - 87)
=1 VI

S i
=1 VII i= 1 VIII
a; >0, 120,77 >0, 687 >0

S.T.

which is to be minimized over W, b, ¢; and 61(-*) and to be
maximized over o, 7, 'yg*) and 65*) fori=1,...,£ Now
since the primal variables are no longer constrained and all
constraints are imposed on the dual variables, we minimize
(11) with respect to the primal variables. Minimizing with

3

respect to W, b, 65*) and &; yields

¢
W= Z ri¢7 (x;)

(12)
=1
¢
Zl‘i =0 (13)
i=1
0
() 2 ) * o~ (¥)
0 = ey (10 871,) =% a4
=C— oy (15)

respectively where T'; 2 4, — ;. These relationships along
with the constraints »; > 0 and 8; ®) >0 imply that

s (1864 571,)

(16)

0
0<~,™ <oy (17)
6!
Observe that the results expressed in (12) and (13) are similar
to those for the SV-SVR. By combining (12) with ¥ in (7)
the expression

¢ ¢
=3 T (x:)p(x) +b =) Tik(xi,x) +b
i=1 i=1
of the VV-SVR estimator is obtained which may be com-
pared to (5). Now the conditions expressed in (17) reflect a
complicated coupling between the primal and dual variables
which may be simplified with the following lemma.
Lemma I: Let V = (R™,|| - ||,) define a normed vector
space and let x € V. Also, let || - || be the dual or conjugate
norm of || - ||, (that is % + % =1). Then

. (
Il )
lldx " lq
for 1 <p < 0.

Proof: We will examine three cases. We begin with the
smooth case and then address the non-smooth cases where
p € {1,00}.

Case 1: Consider 1 < p < oo for which [||, i
smooth everywhere except at 0. In this case for x

T n
1 - xa] € R" we have ||x[, & (i xl”)

then (nxnp) e bl + a1
Now since ¢ = dxrect manipulation yields

| ()|,

=1

il ” w

~

(B

(nxu" 2 (bl”

P
P i=1 )

In the following two cases the norms ||-||; and ||-||,, are
non-smooth. However, it will be shown that norm may be
modeled as a collection of smooth subspaces which cover V.

1.

i



The gradient may then be calculated in each of these sub-
spaces to yield all of the possible directions of maximum
ascent at a non-smooth point. In this sense the gradient is
multi-valued at non-smooth points, however, it is shown that
the dual norm of each of these possible values is always 1.

Case 2: Next, consider p = 1. In the smooth regtons
o lIxll, = [£1 +1] which clearly has an co-norm
of 1. Non-smooth regions exist for any x; = 0 (called the
coordinate subspaces here). Let x,, denote a candidate point
in one of these coordinate subspaces. We define the smooth

coordinate vector C(X,s) = [C1 C)T as
0, if y; = 0

CilXns) = . :
sign(xi), if xi #0

the zero coordinate vector as Z(x,,) = 1 — |C| and the
ternary permutation vector as T (X,,) = [T T.)7
where 7; € {-1,0,1}, V ¢ = 1,...,m. In the
neighborhood of a non-smooth point X, ,, the norm may
be modeled as the linear functional given by |x||; =
(CXna) + Z(Xns) o T (xs))T X Where o denotes an
element-wise product. It is clear that all of the directions of
maximum ascent (defined by the permutations of Z( YoT(+))
from such a non-smooth point are given by

€ {C(Xns) + Z(Xns) ©

X=Xns

;ld; (Ixll) T (x0,)}\{0} -

all of which have an co-norm of 1, even for x,,, = 0.
Case 3: Finally consider p ~ oo. In smooth regions
= lIxl o [-- 0 %1 0 ---] which clearly has a
1-norm of 1 Non-smooth regions exist for any |x;| =
Ixjl = lIxlloo, @ # J which are called the maximal
equality subspaces here. Let X, denote a candidate point in
one of these maximal equality subspaces. Define the active

coordinate vector A(X,,) = [A1 AT as follows
0, if x| <
Ax) =40 1 xi] < [l
sign(x:), if il =[xl
and the binary permutation vector as B(X,,) =
B -+ Bp)T where B, € {0,1}, Vi =1,...,m are

the permutations of directions available for x to increase
along its maximal equality subspaces. In the neighborhood
of a non-smooth point x,,, the norm may be modeled as the
linear functional given by

 (AXns) © BXns))”
HA(an) o B(an)“l

Therefore, all of the possible directions of maximal ascent in
an immediate neighborhood of a maximal equality subspace
are then

d
2 ()

Xl oo

A(Xps) © B(Xns)
s {Ficme Blxao)l, } Mo3-

Now it is clear that the 1-norm of each of these possible
gradients is equal to one. | |

L\

Now if we take the g-norm of (17) and subsequently apply
Lemma 1 along with (16) we obtain [|T';||, < a; < C from
which we conclude (without loss of generality) that

a; = |4, <C. . (18)

because it may be shown that o; > [|IT';f|, is always sub-
optimal. We may now substitute (18), (12), (13), (14) and
(15) into the Lagrangian problem (11) to obtain the dual
problem expressed in terms of {I';}§ as

Max:

¢
1 T
Max D= -3 Z T; Tik(xi, x;)

3,j=1

4
+> 7
i=1
£
> Ti=0,
=1

Here we note a similar structure to the scalar-valued case as
shown in (4) and upon careful examination of (19) and (4)
we observe that they are identical when m = 1, thus (19)
generalizes the SV-SVR problem. We will now develop the
KKT conditions.

C. Karush-Kuhn-Tucker (KKT) Conditions

In the SVM literature the KKT conditions state that at
the optimum the product of each Lagrange multiplier and its
associated constraint must vanish. For our particular problem
the KKT conditions indicate that terms III through VIII of
(11) must each vanish at the optimum. Let the error be
defined as e; £ y; — Wo(x;) — b and let the elements
of the vectors be as follows v{* 2 [’Yz(*l) ’Yl(*rl] ,

and e; = [ei; ei,m]T.
We begin by stating without proof the rather obvious fact
that &; ;07 ; = 0 from (10). Likewise by (11.V) and (11.VI)
we have v; ;v = = 0. Also by the construction of (10), we
may choose without loss of generality that §; — 8] = e;.
Furthermore, when «; = {|T'i[|, # 0 according to (11.V),
(11.VD), (11.VII) and (11.VIII) we have

Fi = sign(e; -—‘i "

which for 1 < p < oo becomes (IIF d )q = <I es L) This

(19)

Y2
Ti—ey [T,
i=1

Il < C

T
o0 2 [ s

(20)

feill
implies that there exists a directiona relatlonshlp between

the error e; and the Lagrange multiplier T'; when [|T;||, # 0.
In addition to these directional relationships, the magnitude
of the dual variable T'; in vector-valued case yields informa-
tion regarding the magnitude of the error e;. To explore this
relationship, consider the three cases of a; = ||I';[|, with
respect to its constraints at 0 and C as shown in (16).
Vamshmg |T|l,- First, consider the case where IT:ll,

; = 0 which 1mpllcs that ||e;|, —& —¢ % 0 by (11.1D) and
since & = 0 by (11.IV) and (15) it follows that |le;|,
e since ||e;]l, > & would violate the constraint in (10)
Therefore, we conclude that |||, =0 = [lef|, <e.



Unconstrained |[I';||,. Next, consider the case where
IT:ll, = a: € (0,C) . Since a; # O then |le;|, — & —e =0
by (11.II1). Also, since o; # C it follows that 7; # 0 by (15)
which in turn implies that £; = 0 from (11.IV). Hence, we
conclude that |[I';[|, € (0,C) = |leif|, =e.

Bounded ||T;|,. Finally, consider the case where ||T[|, =
a; = C. This implies that n; = 0 by (15), consequently
&; # 0 from (11.1V) and due to the constraint in (10), & > 0.
Additionally, since a; = C, it follows that [|e;||,~&—£ =0
according to (11.III) which implies [le;||, = & +¢ > e
Hence, it is clear that ||, = C = |l&;]|, > «.

D. Determining the Bias

The VV-SVM optimization problem is solved in the dual
space of Lagrange multipliers, {I';}%, leaving the bias, b,
from the primal problem (10) yet to be determined. Just like
the scalar-valued SVM, b is completely determined by {T';}§
based on the KKT conditions just derived. Let the support
vectors be those input vectors x; for which [|T';[|, # 0, then
for each support vector which is on the margin (|T|, €
(0,C)) we know that the magnitude of the error is given
by [lei]|, = € and that the direction is given by (20). Let

the biased errorbe F, 2 e; +b =1y, — Eﬁ:l Lk(x;,x;)
and the signature be o, = sign(T';) where sign(-) is taken
element-wise and sign(0) = 0, then for all i € M £ {i :
IT:ll, € (0,C)} and 1 < p < oo the KKT conditions require
that

IT|

)\
b=F,—co;o0 '
<uriu¢,)

which allows the bias to be calculated from any element in
M. Note that this method will not work for p = 1 or p ~
oo because (20) does not fully convey all of the necessary
direction information to properly assess the bias. In these
cases, one may have to use up to m points from M with
linearly independent signatures to determine the bias.

@n

1V. SPECIFIC FORMULATIONS FOR COMMON NORMS

The results presented thus far have been derived for the
general case 1 < p < oo which is primarily of theoretical
interest. For practical computational interests, values other
than p = 1,2,00 are of less value due to their complexity.
The cases of p =1 and p ~ oo are appealing because they
result in linear math. The case of p = 2 is appealing because
it is Euclidian, results in a symmetry between the primal and
dual spaces (since ¢ = 2) and is mathematically tractable. In
this section each of these three cases are studied with regard
to a solution strategy.

A. 1-Norm
In this case we have p = 1, therefore, ¢ ~ oo in (19) and
re-introducing «;, the dual problem becomes

£
1
D= —-—2- Z I‘fI‘jk(xi,xj)

3,5=1

Max:
{Fi,ai}

¢ ,
+ Z yiT; —¢ Z oy
=1 =1
,

ST: > Ti=0, a1 <T; <1, 0<<C
i=1

which is quadratic in its objective and linear in its constraints.
It can be solved with standard quadratic programming soft-
ware. For each support vector which is on the margin (1 €
M) the KKT conditions indicate that ||e;||; = &. This
information must be exploited to find the bias b because
(21) cannot be used for p = 1.

To determine the bias, m marginal support vectors must
be found which have linearly independent signatures, o;. So
for i € M, ||e;||1 = € may be computed as crlTe,f = ¢ hence
it follows that T -

o;b=0c;F;—¢
olb=F7 —¢
where F7 £ olF;. Amassing all k samples in M, a

consistent system of over-determined equations is obtained
as

O'T Fy
b= " —l
ol Eg
Sb=F —¢1

where § £ [0 o‘k]T and Fo £ [F¥ F,;’]T
are introduced. This system is easily solved by one of two
methods. Since the system of equations is consistent, m
independent rows may be extracted from & and the equation
solved directly or the entire matrix & may be inverted using
the Moore-Penrose pseudo-inverse

b=S8"(F7 —¢l)
-1
where St £ (STS) sT.

B. 2-Norm

In this case p = 2, therefore, ¢ = 2. By re-introducing «;,
the dual problem becomes

1 J4

D= —5 Z I‘?ij(xi,xj)

i,j=1

£ ¢
+D yiTi-e) o
i=1 i=1

Max:
{Fivo‘i}

4
ST: > Iy=0,T/ri<of, 0<a; <C

5 i=1



which is quadratic in its objective but nonlinear in its con-
straints. It must be solved using general nonlinear program-
ming software. Fortunately, the objective and the constraints
are smooth, so gradient information is available to be used
in the optimization process. For each support vector which is
on the margin, the KKT conditions indicate that [le;}, = ¢.
This information may be exploited to find the bias b but
the use of Equation (21) is permitted. So in this case the
following holds
b:Fi—(-I‘—i)& YV ieM
Tl
where the signature o; from (21) is not needed because g —

1 = 1 is whole and odd which preserves the sign information
in Fi-

C. oo-Norm

In this case p = oo, therefore, ¢ = 1. By re-introducing
v, and <}, the dual problem becomes

4
1 * *
D=2 3 (v =¥, = k(i)

Max:
{~ivi} ij=1
y) £
+ 2 yE =) —e 31T (i + )
i=1 i=1
I3
ST: D (vi—=7)=0,1T(v+7]) <C,

i=1

which is quadratic in its objective and linear in its constraints.
It can be solved with standard quadratic programming soft-
ware. For each support vector which is on the margin, we
know that |le;|| . = €. This information must be exploited
to find the bias b because (21) cannot be used for p ~ co.

Due to the nature of the optimization problem, I'; will
typically be sparse because one component will be more
effective at increasing the objective function than the othersl.
It is also seen from (20) that ”lTrHl: = limy . (u_l%):n’ce
so for any e; ; # |e;|,, it follows that I';; = 0 and yisa
versa. So for any element of I'; ; = 0 no conclusion may be
drawn with regard to e; ; other than e; ; < |le;|| . Then to
determine the bias, at most m support vectors must be found
which have linearly independent signatures. So for ¢ € M,
lleill, = € is equivalent to o; o e; = £|o;| hence it follows
that

O'iOb:"—O'iOFi—EIU'il

diag(ors)b = FY — ||
where F¢ £ o, o F;. Amassing all k samples in M, a

consistent system of over-determined equations is obtained
as

diag(o1) F{ —¢loy|
I b= :
diag(ok) F7 —elokl
Sb =F?® —¢|o|

i>

where § £ [diag(oy) diag(ak)]T, FS
BT o F¢T)T and o 2 [T - o7 are
introduced. This system is easily solved by one of two
methods. Since the system of equations is consistent, m
independent (and non-zero) rows may be extracted from S
and the equation solved directly or the entire matrix S may

be inverted using the Moore-Penrose pseudoinverse yielding
b= 8" (FS —¢|o]).

V. EXPERIMENTAL DEMONSTRATIONS

The first of two examples concerns learning a mappin
f : R! — R? given by y(z) = [¢®!® sinc(z) cos(0.12%)]
which is suitable for visualization. We choose 50 equally
spaced samples on z € [0,10] as the input data, a RBF
kernel with ¥ = %, C = 100 and ¢ = 0.1. The results of
the VV-SVR training with p = 1, p = 2 and p ~ oo are
shown in Figures 1, 2 and 3 respectively. Each of these
figures contain four plots illustrating the solution. For the
three different norms, there were 16, 16 and 19 support
vectors found respectively.

The second example is a fit of the Hwang data set [11]
(which is available at the Delve database [12]) which consists
of a function H : [0,1]> — RS5. Our intention here is
to demonstrate the sparsisity of the VV-SVR approach as
compared to the aggregated SV-SVR approach. In this case
we use a sample size of £ = 2,000. For the VV-SVR
we choose ¢ = 0.5 and p = g = 2. To obtain a fair
comparison we choose a compatible value of ¢ for the SV-
SVM by assuring that the hyper-volume of the hyper-cube
{e: —€1 < e < €1} be the same as the hyper-volume of
the ball {e : ||e||2 < 0.5}. We therefore choose £ = 0.3485
for the scalar-valued case. Upon performing the calculations
it was found that the VV-SVR method is indeed sparser in
support vectors than the aggregated SV-SVRs (which used
LIBSVM [13]). Of the 2,000 training points, both methods
discovered a total of 124 unique support vectors between
them, 55 for the VV-SVR method and 6, 20, 28, 29 and 25
for Hy(x) through Hs(x) respectively for 92 unique values
for the aggregated SVR method. In both cases we chose a
RBF kernel with v = 8 and C = 100. We observe that each
SV-SVR is individually sparser than the VV-SVR, however in
aggregate, they are less sparse than the VV-SVR method. The
sparseness of the VV-SVR is attributable to the third term
in the right hand side of (19). This term adds a cusp to the
objective function which “traps” some T'; at 0, thus resulting
in aggregate sparsisity. For estimators with large dimensional
input spaces, the kernel evaluation becomes significant in
the computation of the estimate; it is therefore desirable to
obtain the sparsest solution in terms of support vectors for
efficiency of evaluation. It is in this regard that VV-SVR has
an advantage over the aggregated SV-SVR approach. These
sparsisity results are illustrated in Figure 4 where are shown
the VV-SVR support vectors (left), the scalar-valued SVM
support vectors (center) and the aggregated scalar-valued
SVM support vectors (right).



Fig. 1.
T; vs. z. (d) Lagrange multipliers.

-2 -1 0 1 2

(@

1-norm VV-SVR Approximation of y(x). (a) Original function y;(z) and ¥;(z). (b) Errors e; and the ball {je||1 = €. (c) Lagrange multipliers

(d

Fig. 2. 2-norm VV-SVR Approximation of y(x). (a) Original function y;(z) and §;(z). (b) Errors e; and the sphere |lef|2 = &. (c) Lagrange multipliers

T'; vs. z. (d) Lagrange multipliers.
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Fig. 3. oo-norm VV-SVR Approximation of y(z). (a) Original function y; () and §;(z). (b) Errors e; and the ball ||e||cc = €. (c) Lagrange multipliers

T'; vs. z. (d) Lagrange multipliers. :

VI. OBSERVATIONS AND CONCLUSIONS

First we observe that VV-SVR is an extension of the SV-
SVR in that they are equivalent when m = 1. Table I shows
a comparison of the two methods. Secondly we observe that
the aggregated SV-SVR approach is equivalent to the VV-
SVR if in (8) we let L(e) £ |||e|c||1. Thirdly we observe
that dual variables which are at bound (ie. |[T;lly = ©)
retain m—1 degrees of freedom. Finally, we conclude that the
advantages of VV-SVR proceed from the fact that they result
in sparser solutions and thus more efficient implementations.

9

REFERENCES

[1] C. A. Micchelli and M. Pontil, “On learning vector-valued functions,”
Neural Computation, vol. 17, no. 1, pp. 177-204, January 2005.

[21 E. Vazquez and E. Walter, “Multi-output support vector regression,”
in SYSID 2003 IFAC Conference Proceedings, 2003.

[3] C. A. Micchelli and M. Pontil, “Kernels for multi-task learning,” in
Advances in Neural Information Processing Systems 17, L. K. Saul,
Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press, 2005,
pp- 921-928.

(4] S. Ben-David and R. Schuller, “Exploiting task relatedness for multiple
task learning,” in 16th Annual COLT Proceedings, B. Scholkopf and
M. Warmuth, Eds. Heidelberg: Springer, 2003.

[5] T. Evgeniou and M. Pontil, “Regularized multi-task learning,” in
Proceedings of the 2004 ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. New York: ACM Press,
April 2004, pp. 109-117.

[6] T. Evgeniou, C. A. Micchelli, and M. Pontil, “Learning multiple tasks



TABLE I
COMPARISON OF SV-SVR TO VV-SVR.

( | SV-SVR VV-SVR
loss function I lI-Itp
£
regularization 2w, w) I T(WWT)
estimator (primal) (w, ¢(x)) + Wo(x)+b
estimator (dual) Yiclsy, Bik (xi, %) +b Y iclsy Lik (Xi,%) +b
dual problem G (19)
. T, _ 0

sign(f3;) = sign(e;) T, = e leall,

KKT conditions |B’| =0= |€¢| <€ HPin =0= ”eiHP <€
0<|Bi| <C==leil =¢ | 0 <|Til|l, < C = |lesll, = ¢
18] =C = lei| > ¢ ITifl, = C = |les]l, > €

with kemel methods,” Journal of Machine Learning Research, vol. 6,
pp. 615637, April 2005.

[7] E Pérez-Cruz, G. Camps-Valls, E. Soria-Olivas, J. J. Pérez-Ruixo,
and A. R. F-V. A. Artés-Rodriguez, “Multi-dimensional function
approximation and regression estimation,” in Proc. ICANN, Matrid,
Spain, 2002.

[8] M. Sdnchez-Ferndndez, M. de Prado-Cumplido, J. Arenas-Garcia, and
E Pérez-Cruz, “SVM multiregression for nonlinear channel estimation
in multiple-input multiple-output systems,” IEFEE Transactions on
Signal Processing, vol. 52, no. 8, pp. 2298-2307, Aug 2004.

[9] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines. Cambridge, UK: Cambridge University Press, 2000.

[10] A. Smola and B. Scholkopf, “A tutorial on support vector regression,”
Royal Holloway College, University of London, UK, NeuroCOLT
Technical Report NC-TR-98-030, 1998.

[11] J.-N. Hwang, S.-R. Lay, M. Maechler, R. D. Martin, and J. Schimert,
“Regression modeling in back-propagation and projection pursuit
learning,” IEEE Transactions on Neural Networks, vol. 5, no. 3, pp.
342-353, 1994.

[12) D. o. C. S. University of Toronto,
ating learning in valid experiments
http://www.cs.toronto.edu/ delve/.

[13] C-C. Chang and C.-J. Lin, LIBSVM: a library for
support  vector  machines, 2001, software available at
http://www.csie.ntu.edu.tw/"cjlin/libsvm.

“Data for
(DELVE),”

evalu-
1998,

Mark Brudnak (M’04) received his B.S. in electrical engineering from
Lawrence Technological University, Southfield, Michigan in 1991, his
M.S. in electrical and computer engineering and his Ph.D. in systems
engineering from Oakland University, Rochester, Michigan in 1996 and 2005
respectively.

Dr. Brudnak is a research engineer at the U.S. Army Tank Automo-
tive Research Development and Engineering Center (TARDEC) which is
a component of the Research Development and Engineering Command
(RDECOM). His work involves the use of motion base simulators in both
the durability testing of vehicle systems and the evaluation and assessment
of human performance/behavior in an immersive virtual environment. His
research interests involve the control and black-box modeling dynamical
systems.

ﬁﬁ

=7 E
———
=====l=
'“E' ii
___
EScEEg——
-%
=R

—
Q)
~—
—
O
—
—_—
(a)
~—

Fig. 4. Sparsisity of VV-SVR vs. SV-SVR. Shown are 124 unique support
vectors found. The rows represent unique indices ¢ and the columns indicate
the outputs Hy (x) through Hz(x) from left to right. A black cell indicates
a support vector. (a) The 55 support vectors for the VV-SYR method. (b)
Plot of the support vectors found for each SV-SVR. (¢) The 92 support
vectors for the aggregated SV-SVR method.



